

Biochemical and Biophysical Research Communications 297 (2002) 138-142

www.academicpress.com

The structure of an endomorphin analogue incorporating 1-aminocyclohexane-1-carboxlylic acid for proline is similar to the β-turn of Leu-enkephalin

Mitsunobu Doi,* Akiko Asano, Eri Komura, and Yoko Ueda

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan Received 3 August 2002

Abstract

Endomorphin (EM2, Tyr–Pro–Phe–Phe–NH₂) can assume various conformations related to *cisltrans*-rotamers of the amide linkage of Tyr–Pro. To control isomerization, restricted or flexible components have been introduced at the Pro position. We focused on [Chx²]EM2, an EM2 analogue substituting 1-aminocyclohexane-1-carboxlylic acid (Chx) for Pro. X-ray diffraction analysis revealed that [Chx²]EM2 is folded into the *trans*-form of Tyr–Chx. The manner of folding resembled that seen in D-TIPP, an EM analogue incorporating tetrahydroisoquinoline carboxylic acid, as well as the β -turn of Leu-enkephalin. Selectivity for the opioid μ -receptor was fairly well conserved by [Chx²]EM, suggesting that the folded form is important for μ -selectivity. © 2002 Elsevier Science (USA). All rights reserved.

Keywords: Crystal structure; Endomorphin; Enkephalin; Folding; Morphiceptin; Opioid receptor; Proline isomer

Endomorphin-1 (EM1, Tyr-Pro-Trp-Phe-NH₂) and endomorphin-2 (EM2, Tyr-Pro-Phe-Phe-NH₂) were originally isolated from mammalian brain cortex as endogenous μ-selective opioid peptides [1]. The cis/transrotamers of the amide linkage at Tyr-Pro allow EMs to exist as cis- and trans-isomers. Such isomerization underlies much of the conformational variation seen in EMs [2], though amidation at the C-terminus provides EMs with additional conformational flexibility [3]. Similar proline isomers have also been observed with morphiceptin (Tyr-Pro-Phe-Pro-NH₂) [4,5] and its Val⁴ analogue (Tyr-Pro-Phe-Val-NH₂), which are related µ-selective opioid peptides isolated from milk protein [6,7]. Conformational variation in EMs has even been observed in a membrane-mimetic environment [8]. To control this isomerization, various peptidomimetic components have been incorporated into EMs. One way to restrict the conformational changes around proline is to insert tetrahydroisoquinoline carboxylic acid (Tic) [9–14]. In some instances, incorporation of Tic alters the

opioid receptor selectivity of the modified agonist [10,11] and the structures of Tic-incorporated EM analogues and their relationship to receptor selectivity have been extensively studied [12–16]. Conversely, attempts have also been made to increase the conformational flexibility by incorporating β -amino acid or 2-aminocyclopentane carboxylic acid [7,17,18] and Yamada et al. [19] recently replaced the proline of EM2 with 1-aminocyclopentane1-carboxylic acid (Cpn) or 1-aminocyclohexane-1-carboxlylic acid (Chx).

Cpn and Chx are achiral analogues of $C\alpha$, $C\alpha$ -disubstituted glycine (Fig. 1). There is no rotational limitation on the N–C α bond of Cpn or Chx and the bulkiness of their aliphatic side chain is similar to that of proline. Moreover, binding assays showed opioid activities were fairly well conserved: $IC_{50}(\mu\text{-receptor})$ of $[Cpn^2]EM2$ and $[Chx^2]EM2$ are 8.31 ± 2.13 and $47.1\pm2.30\,\text{nM}$, respectively, and the $IC_{50}(\delta\text{-receptor})$ of $[Cpn^2]EM2$ and $[Chx^2]EM2$ are 3470 ± 1650 and $2250\pm1060\,\text{nM}$, respectively. Thus, $[Cpn^2]$ - and $[Chx^2]EM2s$ would seem to be excellent probes with which to characterize the structural behaviour of EM. Here, we report on the crystal structure of $[Chx^2]EM2$ hydrochloride.

^{*}Corresponding author. Fax: +81-726-90-1005. *E-mail address:* doit@gly.oups.ac.jp (M. Doi).

Fig. 1. Structures of endomorphin and its analogues.

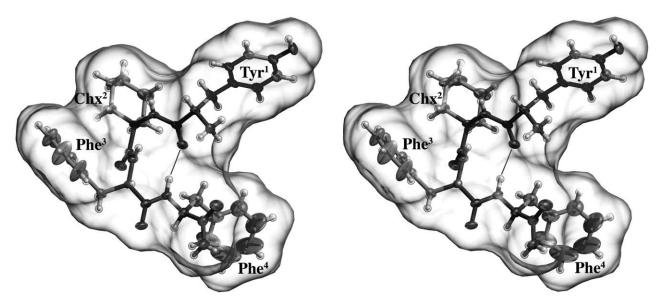


Fig. 2. Stereo view of [Chx²]EM. The accessible surface is depicted as a ball-and-stick drawing to show the molecular appearance. Displacement ellipsoids are drawn at the 80% probability level. Thin lines represent hydrogen bonds. The figure was drawn using the Raster3D package [33] and the accessible surface was calculated with MSMS [34].

Materials and methods

Materials. [Chx2]EM2 was synthesized using a conventional liquidphase method. tert-Butyloxycarbonyl (Boc)-chemistry was employed for peptide elongation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 1-hydroxybenzotriazole. Initially, phenylalanine benzyl ester (Phe-OBzl) was coupled with Boc-Phe. The protected dipeptide obtained was treated with trifluoroacetic acid (TFA) and then coupled to Boc-1-aminocyclohexane-1-carboxlylic acid (Boc-Chx). The resultant protected tripeptide was treated with TFA and then coupled with Boc-Tyr, after which the protected tetrapeptide was saponified with 1 M NaOH and then amidated by coupling with 1-hydroxybenzotriazole ammonium salt. The resultant Boc-tetrapeptide was purified by silica gel-column chromatography, after which the purified peptide was treated with 4 M HCl/dioxane, and HCl · [Chx2]EM2 was recrystallized from methanol-ethyl acetate solution. Single crystals were grown from acetonitrile (MeCN)-water solution using the vapourdiffusion method at room temperature.

Data collection and structure determination. A crystal of HCl·[Chx²]EM2 was mounted on a nylon loop (Hampton Research, USA) with glycerol and then flash-frozen under a nitrogen stream (100 K). Data collection was performed on a CCD diffractometer (Bruker AXS SMART APEX). Crystal data: formula = $C_{34}H_{41}N_5O_5 \cdot HCl \cdot 2(CH_3CN) \cdot 2(H_2O)$, $M_r = 754.32$, orthorhombic, $P2_12_12_1$, a = 10.2876(10) Å, b = 16.3534(15) Å, c = 25.815(2) Å, V = 4343.1(7) ų,

Z=4, F(000)=1608, $\mu(\text{Mo C}\alpha)=0.139\,\text{mm}^{-1}$, number of observed reflections = 34,041, number of reflections used for refinement = 10,158, $R_{\text{int}}=0.0358$, Flack × perimeter = 0.06(11), number of parameters = 496, R=0.0923, wR=0.2548, $(\Delta/\sigma)_{\text{max}}=0.008$, $\Delta\rho_{\text{max}}=1.733\,\text{e}\,\text{Å}^{-3}$, and $\Delta\rho_{\text{min}}=-0.475\,\text{e}\,\text{Å}^{-3}$. The structure was solved using the dual-spacing recycling method with SHELXD [20] and refined

Table 1 Torsion angles (°) of [Chz²]EM and D-TIPP

Angle	[Chx ²]EM	D-TIPP ^a	Angle	[Chz ²]EM	D-TIPP ^a
	Tyr ¹	Tyr ¹		Phe ³	Phe ³
ψ_1	142.4(3)	156/140	ϕ_3	68.4(5)	-58/-88
ω_1	171.1(3)	167/-177	ψ_3	12.8(5)	-49/-16
χ_1	-54.3(4)	-74/-174	ω_3	-178.0(3)	-163/-179
	Chx ²	D-Tic ²	χ_3	-47.7(4)	-67/-59
ϕ_2	57.4(5)	62/65		Phe ⁴	Phe ⁴
ψ_2	27.6(5)	-146/-160	ϕ_4	-87.4(4)	-129/-109
ω_2	179.5(3)	-168/167	ψ_4	120.3(4)	3/-18
χ_{21}^{b}	69.9(4)	47/-48	χ_4	178.3(4)	-61/-57
χ_{22}^{b}	-65.8(4)				

^a Two independent molecules exist in the symmetric unit of D-TIPP crystal [15].

^b The Chx residue has two carbons at β-position.

using SHELXL97 [21]. In the refinement, the solvent molecules were found using a differential Fourier map and two MeCN and two water molecules were included for the structure refinements.

Results and discussion

The structure of [Chx²]EM2 is shown in Fig. 2. The peptide is folded at the Chx–Phe moiety with an intermolecular hydrogen bond. The peptide bond of the

peptidomimetic substituted for proline (Tyr^1-Chx^2) is in the *trans*-form (Table 1). It appears that the folding pattern of Chx^2 -Phe³ makes a 10-membered ring that resembles a β -turn, though the torsion angles do not readily fit into any class of β -turn. Solvent molecules and a counterion that interact with the peptide in various ways were also found in the $[Chx^2]EM2$ crystal. A Cl^- ion located in the bay of the folded peptide (Fig. 3A) makes contact with Tyr^1 NH₃, Phe³ NH, Phe⁴

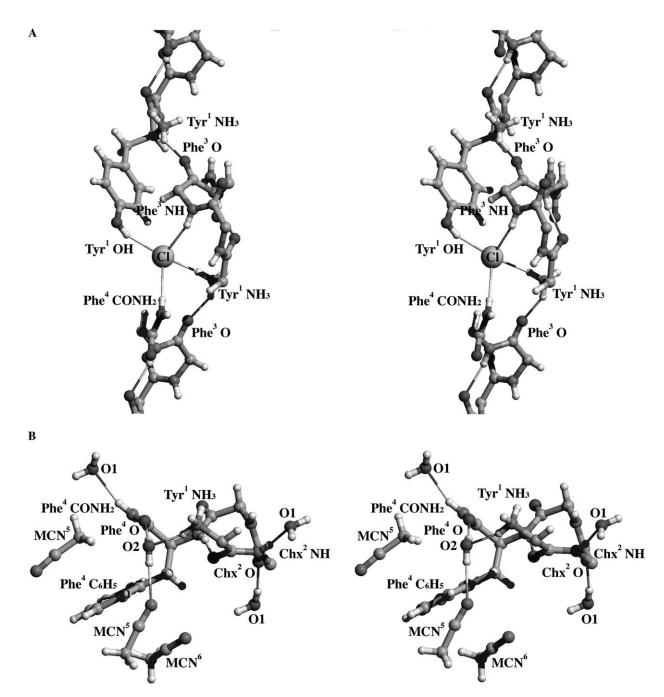


Fig. 3. Stereo views of interactions in the [Chx²]EM crystal. (A) Interactions between Cl⁻ and the peptide; (B) interactions between solvent molecules and the peptide. Thin lines represent coordinations and hydrogen bonds. Some side chains are omitted for clarity. The figure was produced with RasMol [35] and POV-Ray [36].

Table 2 Hydrogen bonds and coordinations found in the [Chx²]EM2 crystal

D	A	$D\cdots A\ (\mathring{A})$	$H \cdots A \ (\mathring{A})$	∠D–H · · · A (°)	Symmetry code
Phe ⁴ NH	Tyr ¹ O	2.901(4)	2.036	167.4	
Tyr^1NH_3	Phe ³ O	2.752(4)	1.943	147.2	1 - x, $y + 1/2$, $3/2 - z$
Tyr ¹ NH ₃	Cl	3.098(3)	2.265	151.8	
Phe ³ NH	Cl	3.282(3)	2.536	143.0	
Tyr ¹ OH	C1	3.052(3)	2.275	154.2	1-x, $y+1/2$, $3/2-z$
Phe ⁴ CONH ₂	Cl	3.275(3)	2.412	166.9	1-x, $y-1/2$, $3/2-z$
Tyr ¹ NH ₃	$O2^a$	2.742(5)	1.861	161.9	
Chx ² NH	O1 ^a	3.065(5)	2.195	170.2	-x, $y + 1/2$, $3/2 - z$
Phe ⁴ CONH ₂	O1 ^a	2.986(4)	2.233	143.4	x+1, y, z
Ola H	Chx ² O	2.741(5)	1.890	170.3	
O2 ^a H	Phe ⁴ O	2.754(5)	1.867	167.9	
O2 ^a H	MCN ⁵ N	2.921(15)	2.120	169.8	$x - 1/2, \ 1/2 - y, \ 1 - z$

^aO1 and O2 are oxygen atoms within water molecules.

CONH₂, and Tyr¹ OH at distances of 3.05–3.28 Å (Table 2). These interactions differ from the strong coordinated bonds between metal and ligands, but the Cl⁻ ion does weakly coordinate to the peptide. A water molecule at O1 is hydrogen-bonded to Chx² NH, Phe⁴ CONH₂, and Chx² O. Direct peptide-peptide interaction is only observed between Tyr¹ NH₃ and Phe³ O, though hydrogen bonds related to the O1 atom contribute to the intermolecular interaction between the peptides (Fig. 3B). A water molecule at O2 interacts with Tyr¹ NH₃ and Phe⁴ O. These hydrogen bonds make a 16-membered ring in the folded peptide. The O2 atom mediates the interaction between the N- and C-termini, and stabilizes the peptide folding. Acetonitrile molecules, MCN⁵ and MCN⁶, are positioned beside the phenyl ring of Phe⁴ due to hydrophobic effects and the symmetry-translated MCN⁵ is hydrogen-bonded to the water O2 molecule.

Flippen-Anderson et al. [15] described the folded structure of Tic-incorporated EM analogues (D-TIPP) as unique. Within [Chx²]EM2, an intramolecular hydrogen bond is formed between Phe⁴ NH and Tyr¹ O (Fig. 1 and Table 2). Similarly, D-TIPP forms an intramolecular hydrogen bond, but the hydrogen donor is Phe⁴ CONH₂. There are also conformational differences in the ψ_2 , ϕ_3 , and ψ_3 angles that are related to the peptidomimetic residue (Table 1), but the two structures nevertheless appear similar in drawings (no coordinates of D-TIPP are deposited). It seems that the degree of restriction or flexibility of the N-C α bond at the second residue results in only slight differences between the structures of [Chx²]EM2 and D-TIPP.

Leu-enkephalin (LENK) is a pentapeptide (Tyr–Gly–Gly–Phe–Leu) with opioid activity [22] that exhibits folded, extended and other structures in crystal [23–30]. It is noteworthy that the β -turn of LENK resembles the structure of [Chx²]EM2 and that the two molecules are comparable when their C α atoms are fitted using the method of least squares (Fig. 4). Four independent

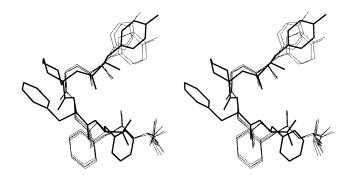


Fig. 4. Stereo view showing superimposition of [Chx²]EM2 and [Leu]enkephalins, which are represented by thick and thin lines, respectively. Four independent molecules exist in the asymmetric unit of the [Leu]enkephalin crystal. The figure was drawn with Swiss-Pdb-Viewer [37].

molecules exist in the asymmetric unit of the LENK crystal. Although [Chx²]EM2 is shorter, the backbones of [Chx²]EM2 and LENK are similar, with an RMSD of 0.48–0.50 Å. LENK is selective for both the δ and μ -receptor subtypes, and its molecular folding is considered to be important for μ -selectivity [23,24]. On the other hand, molecular folding is also observed with δ -selective enkephalin analogues [31,32], and other exceptional structures have been reported [26,27]. Still, the μ -selectivity of the parent peptide is fairly well conserved in [Chx²]EM2 [19] and we therefore believe that conformational similarities within the folded structures of EM analogues should be of interest when considering their opioid receptor selectivity.

References

- J.E. Zadina, L. Hackler, L.J. Ge, A.J. Kastin, Nature 386 (1997) 499–502.
- [2] B.L. Podlogar, M.G. Paterlini, D.M. Ferguson, G.C. Leo, D.A. Demeter, F.K. Brown, A.B. Reitz, FEBS Lett. 439 (1998) 13–20.

- [3] Y. In, K. Minoura, H. Ohishi, H. Minakata, M. Kamigauchi, M. Sugiura, T. Ishida, J. Pept. Res. 58 (2001) 399–412.
- [4] K.J. Chang, A. Killian, E. Hazum, P. Cuatrecasas, Science 212 (1981) 75-77.
- [5] M. Goodman, D.F. Mierke, J. Am. Chem. Soc. 111 (1989) 3489– 3496.
- [6] M. Doi, M. Tanaka, K. Ikuma, M. Nabae, K. Kitamura, M. Inoue, T. Ishida, Biochem. J. 251 (1988) 581–588.
- [7] T. Yamazaki, A. Probstl, P.W. Schiller, M. Goodman, Int. J. Pept. Protein Res. 37 (1991) 364–381.
- [8] S. Fiori, C. Renner, J. Cramer, S. Pegoraro, L. Moroder, J. Mol. Biol. 291 (1999) 163–175.
- [9] M. Keller, C. Boissard, L. Patiny, N.N. Chung, C. Lemieux, M. Mutter, P.W. Schiller, J. Med. Chem. 44 (2001) 3896–3903.
- [10] P.W. Schiller, T.M. Nguyen, G. Weltrowska, B.C. Wilkes, B.J. Marsden, C. Lemieux, N.N. Chung, Proc. Natl. Acad. Sci. USA 89 (1992) 11871–11875.
- [11] P.W. Schiller, G. Weltrowska, T.M. Nguyen, B.C. Wilkes, N.N. Chung, C. Lemieux, J. Med. Chem. 15 (1993) 3182–3187.
- [12] B.C. Wilkes, P.W. Schiller, Biopolymers 34 (1994) 1213–1219.
- [13] P.W. Schiller, G. Weltrowska, I. Berezowska, T.M. Nguyen, B.C. Wilkes, C. Lemieux, N.N. Chung, Biopolymers 51 (1999) 411– 425
- [14] B.C. Wilkes, P.W. Schiller, Biopolymers 37 (1995) 391–400.
- [15] J.L. Flippen-Anderson, J.R. Deschamps, C. George, P.A. Reddy, A.H. Lewin, G.A. Brine, G. Sheldrick, G. Nikiforovich, J. Pept. Res. 49 (1997) 384–393.
- [16] J.L. Flippen-Anderson, C. George, J.R. Deschamps, P.A. Reddy, A.H. Lewin, G.A. Brine, Lett. Pept. Sci. 1 (1994) 107–115.
- [17] D.F. Mierke, G. Nobner, P.W. Schiller, M. Goodman, Int. J. Pept. Protein Res. 35 (1990) 25–45.
- [18] G. Cardillo, L. Gentilucci, P. Melchiorre, S. Spampinato, Bioorg. Med. Chem. Lett. 10 (2000) 2755–2758.
- [19] T. Yamada, M. Iino, N. Matsuoka, R. Yanagihara, T. Miyazawa, N. Shirasu, Y. Shimohigashi, in: N. Fujii (Ed.), Peptide Science, 36th ed., 1999, pp. 441–444.

- [20] G.M. Sheldrick, R.O. Gould, Acta Crystallogr. B51 (1996) 423– 431.
- [21] G.M. Sheldrick, SHELXL97. Program for the Refinement of Crystal Structures from Diffraction Data, University of Göttingen, Germany, 1997.
- [22] J. Hughes, T.W. Smith, H.W. Kosterlitz, L.A. Fothergill, B.A. Morgan, H.R. Morris, Nature 258 (1975) 577–580.
- [23] T.L. Blundell, L. Hearn, I.J. Tickle, R.A. Palmer, B.A. Morgan, G.D. Smith, J.F. Griffin, Science 205 (1979) 220.
- [24] T. Ishida, M. Kenmotsu, Y. Mino, M. Inoue, T. Fujiwara, K. Tomita, T. Kimura, S. Sakakibara, Biochem. J. 218 (1984) 677–689.
- [25] A. Camerman, D. Mastropaolo, I. Karle, J. Karle, N. Camerman, Nature 306 (1983) 447–450.
- [26] J.J. Stezowski, E. Eckle, S. Bajusz, J. Chem. Soc., Chem. Commun. (1985) 681–682.
- [27] J.F. Griffin, D.A. Langs, G.D. Smith, T.L. Blundell, I.J. Tickle, S. Bedarkar, Proc. Natl. Acad. Sci. USA 83 (1986) 3272–3276.
- [28] A. Aubry, N. Birlirakis, M. Sakarellos-Daitsiotis, C. Sakarellos, M. Marraud, J. Chem. Soc., Chem. Commun. (1988) 963–964.
- [29] M. Doi, S. Takehara, T. Ishida, M. Inoue, Int. J. Pept. Protein Res. 34 (1989) 369–373.
- [30] M. Doi, A. Ishibe, H. Shinozaki, H. Urata, M. Inoue, T. Ishida, Int. J. Pept. Protein Res. 43 (1994) 325–331.
- [31] J.L. Flippen-Anderson, J.R. Deschamps, K.B. Ward, C. George, R. Houghten, Int. J. Pept. Protein Res. 44 (1994) 97–104.
- [32] J.L. Flippen-Anderson, V.J. Hruby, N. Collins, C. George, B. Cudney, J. Am. Chem. Soc. 116 (1994) 7523–7531.
- [33] E.A. Merritt, D.J. Bacon, Methods Enzymol. 277 (1997) 505–524
- [34] M.F. Sanner, J.-C. Spehner, A.J. Olson, Biopolymers 38 (1996) 305–320.
- [35] M.A.S. Saqi, R. Sayle, Comput. Appl. Biosci. 10 (1994) 545-546.
- [36] POV-Team, Persistence of Vision Ray Tracer, Williamstown, Vic., Australia, 1991. Available from http://www.povray.org.
- [37] N. Guex, M.C. Peitsch, Electrophoresis 18 (1997) 2714–2723.